Strangeness S=-3 and -4 baryon-baryon interactions in chiral effective field theory

Johann Haidenbauer

IAS & JCHP, Forschungszentrum Jülich, Germany

MENU 2010, Williamsburg, May 31, 2010

Introduction

2 *YN*, *YY*, \equiv *Y*, \equiv \equiv in chiral effective field theory

3 LO Results

Johann Haidenbauer Baryon-baryon interactions

(日) (同) (日) (日)

3

- study the role of strangeness in low and medium energy nuclear physics
- test SU(3)_{flavor} symmetry
- H-dibaryon (Jaffe, 1977)
- prerequisite for studies of (Λ, Σ) hypernuclei
- quest for \equiv hypernuclei \rightarrow J-PARC, FAIR
- implications for astrophysics
 - → stability of neutron stars hyperon stars

Johann Haidenbauer Baryon-baryon interactions

イロト 不同 とくほ とくほ とう

YN data [S = -1]

- about 35 data points, all from the 1960s
- 10 new data points, from the KEK-PS E251 collaboration (from ≈ 2000)
 (cf. > 4000 NN data for E_{lab} < 350 MeV!)

YY data [S = -2]

- a few rough estimations of $\equiv N$ cross sections from the 1970s
- "more precise" cross sections (for Ξ⁻p and Ξ⁻p → ΛΛ) published in 2006
- binding energy of doubly strange hypernuclei $\binom{6}{\Lambda\Lambda}$ He)

S = -3, -4: uncharted territory

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ つくぐ

YN, YY, \equiv Y, \equiv in chiral effective field theory

Advantages:

- Power counting systematic improvement by going to higher order
- Possibility to derive two- and three baryon forces and external current operators in a consistent way
- Obstacle: *YN* data base is rather poor practically no information on *YY*, Ξ*Y*, ΞΞ (→ impose *SU*(3)_f constraints)

few investigations so far (for YN only):

- C.K. Korpa et al., PRC 65 (2001) 015208
- S.R. Beane et al., NPA747 (2005) 55

pion-less theory; Kaplan-Savage-Wise resummation scheme

We follow the scheme of E. Epelbaum et al.

(E. Epelbaum, W. Glöckle, Ulf-G. Meißner, NPA747 (2005) 362)

Power counting

$$V_{
m eff} \equiv V_{
m eff}(\boldsymbol{Q},\boldsymbol{g},\mu) = \sum_{
u} (\boldsymbol{Q}/\Lambda)^{
u} \, \mathcal{V}_{
u}(\boldsymbol{Q}/\mu,\boldsymbol{g})$$

- Q ... soft scale (baryon three-momentum, Goldstone boson four-momentum, Goldstone boson mass)
- Λ ... hard scale
- g ... pertinent low-energy constants
- μ ... regularization scale
- \mathcal{V}_{ν} ... function of order one
- $\nu \geq 0$... chiral power

Lowest order (LO): $\nu = 0$

- a) non-derivative four-baryon contact terms
- b) one-meson (Goldstone boson) exchange diagrams

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ つくぐ

Leading order (LO) contact term for NN

The LO contact term for the NN interaction:

$$\mathcal{L} = C_i \left(\bar{N} \Gamma_i N \right) \left(\bar{N} \Gamma_i N \right)$$

 $\Gamma_{1} = 1 \; , \; \Gamma_{2} = \gamma^{\mu} \; , \; \Gamma_{3} = \sigma^{\mu\nu} \; , \; \Gamma_{4} = \gamma^{\mu}\gamma_{5} \; , \; \Gamma_{5} = \gamma_{5}$

Considering the large components of the nucleon spinors only, the LO contact term becomes

$$\mathcal{L} = -\frac{1}{2} C_{\mathcal{S}} \left(\varphi_{\mathcal{N}}^{\dagger} \varphi_{\mathcal{N}} \right) \left(\varphi_{\mathcal{N}}^{\dagger} \varphi_{\mathcal{N}} \right) - \frac{1}{2} C_{\mathcal{T}} \left(\varphi_{\mathcal{N}}^{\dagger} \sigma \varphi_{\mathcal{N}} \right) \left(\varphi_{\mathcal{N}}^{\dagger} \sigma \varphi_{\mathcal{N}} \right)$$

The LO contact term potential resulting from the interaction Lagrangian:

$$V^{NN o NN} = C_S + C_T \sigma_1 \cdot \sigma_2$$

 C_S and C_T ... low-energy constants; to be determined in a fit to the experimental data.

◆□ → ◆□ → ◆ 三 → ◆ 三 → のへぐ

Leading order contact terms for YN and YY

spin-momentum structure of the LO contact term potential resulting from the *BB* interaction Lagrangian:

$$V^{BB
ightarrow BB} = C_S^{BB
ightarrow BB} + C_T^{BB
ightarrow BB} \sigma_1 \cdot \sigma_2$$

SU(3) structure for scattering of two octet baryons: direct product:

$$8 \otimes 8 = 1 \oplus 8_a \oplus 8_s \oplus 10^* \oplus 10 \oplus 27$$

There are only 6 independent low-energy constants for the *BB* interaction!

(8 independent spin-isospin channels in YN alone!)

 C_S^i , C_T^i can be expressed by the coefficients corresponding to the $SU(3)_f$ irreducible representations: C_S^1 , C_S^{8a} , C_S^{8s} , $C_S^{10^*}$, C_S^{10} , C_S^{27}

イロト 不得 とくき とくきとうき

U(3) content

BB contact interactions in terms of $SU(3)_f$ irreducible representations

	Channel	Isospin	V _{3S1}	Isospin	V _{1S0}
<i>S</i> = 0	$NN \rightarrow NN$	0	C ^{10*}	1	C ²⁷
<i>S</i> = -1	$\Lambda N \to \Lambda N$	$\frac{1}{2}$	$\frac{1}{2}\left(C^{8_a}+C^{10^*}\right)$	$\frac{1}{2}$	$\frac{1}{10} \left(9C^{27} + C^{8_s}\right)$
	$\Lambda N \rightarrow \Sigma N$	$\frac{1}{2}$	$\frac{1}{2}\left(-C^{8_a}+C^{10^*}\right)$	$\frac{1}{2}$	$\frac{3}{10}\left(-C^{27}+C^{8s}\right)$
	$\Sigma N \rightarrow \Sigma N$	$\frac{1}{2}$	$\frac{1}{2}\left(C^{8_{a}}+C^{10^{*}}\right)$	$\frac{1}{2}$	$\frac{1}{10} \left(C^{27} + 9C^{8s} \right)$
	$\Sigma N \rightarrow \Sigma N$	$\frac{3}{2}$	C ¹⁰	32	C ²⁷
S = -3	$\Xi \Lambda \to \Xi \Lambda$	$\frac{1}{2}$	$\frac{1}{2}(C^{8_a}+C^{10})$	$\frac{1}{2}$	$\frac{1}{10} \left(9C^{27} + C^{8_s}\right)$
	$\Xi\Lambda\to\Xi\Sigma$	$\frac{1}{2}$	$\frac{1}{2}(-C^{8_a}+C^{10})$	$\frac{1}{2}$	$\frac{3}{10}\left(-C^{27}+C^{8s}\right)$
	$\Xi\Sigma\to\Xi\Sigma$	$\frac{1}{2}$	$\frac{1}{2}(C^{8a}+C^{10})$	$\frac{1}{2}$	$\frac{1}{10}(C^{27}+9C^{8s})$
	$\Xi\Sigma \to \Xi\Sigma$	32	<i>C</i> ^{10*}	32	C ²⁷
<i>S</i> = -4	$\Xi\Xi \rightarrow \Xi\Xi$	0	C ¹⁰	1	C ²⁷

10 and 10^{*} representations interchange their roles when going from the S = 0, -1 to the S = -3, -4 channels

・ロト ・ 同ト ・ ヨト ・ ヨト

э

One pseudoscalar-meson exchange

$$\mathcal{L} = -f_{NN\pi}\bar{N}\gamma^{\mu}\gamma_{5}\boldsymbol{\tau}N \cdot \partial_{\mu}\boldsymbol{\pi} + if_{\Sigma\Sigma\pi}\bar{\boldsymbol{\Sigma}}\gamma^{\mu}\gamma_{5} \times \boldsymbol{\Sigma} \cdot \partial_{\mu}\boldsymbol{\pi} -f_{\Lambda\Sigma\pi} \left[\bar{\Lambda}\gamma^{\mu}\gamma_{5}\boldsymbol{\Sigma} + \bar{\boldsymbol{\Sigma}}\gamma^{\mu}\gamma_{5}\Lambda\right] \cdot \partial_{\mu}\boldsymbol{\pi} - f_{\Xi\Xi\pi}\bar{\Xi}\gamma^{\mu}\gamma_{5}\boldsymbol{\tau}\Xi \cdot \partial_{\mu}\boldsymbol{\pi} -f_{\Lambda NK} \left[\bar{N}\gamma^{\mu}\gamma_{5}\Lambda\partial_{\mu}K + \bar{\Lambda}\gamma^{\mu}\gamma_{5}N\partial_{\mu}K^{\dagger}\right] -f_{\Xi\Lambda K} \left[\bar{\Xi}\gamma^{\mu}\gamma_{5}\Lambda\partial_{\mu}K_{c} + \bar{\Lambda}\gamma^{\mu}\gamma_{5}\Xi\partial_{\mu}K_{c}^{\dagger}\right] -f_{\Sigma NK} \left[\bar{\boldsymbol{\Sigma}}\cdot\gamma^{\mu}\gamma_{5}\partial_{\mu}K^{\dagger}\boldsymbol{\tau}N + \bar{N}\gamma^{\mu}\gamma_{5}\boldsymbol{\tau}\partial_{\mu}K \cdot \boldsymbol{\Sigma}\right] -f_{\Sigma\Xi K} \left[\bar{\boldsymbol{\Sigma}}\cdot\gamma^{\mu}\gamma_{5}\partial_{\mu}K_{c}^{\dagger}\boldsymbol{\tau}\Xi + \bar{\Xi}\gamma^{\mu}\gamma_{5}\boldsymbol{\tau}\partial_{\mu}K_{c} \cdot \boldsymbol{\Sigma}\right] - f_{NN\eta_{8}}\bar{N}\gamma^{\mu}\gamma_{5}N\partial_{\mu}\eta -f_{\Lambda\Lambda\eta_{8}}\bar{\Lambda}\gamma^{\mu}\gamma_{5}\Lambda\partial_{\mu}\eta - f_{\Sigma\Sigma\eta_{8}}\bar{\boldsymbol{\Sigma}}\cdot\gamma^{\mu}\gamma_{5}\boldsymbol{\Sigma}\partial_{\mu}\eta - f_{\Xi\Xi\eta_{8}}\bar{\Xi}\gamma^{\mu}\gamma_{5}\Xi\partial_{\mu}\eta$$

One pseudoscalar-meson exchange

$$V^{B_{1}B_{2} \to B_{1}'B_{2}'} = -f_{B_{1}B_{1}'P}f_{B_{2}B_{2}'P}\frac{(\sigma_{1} \cdot \mathbf{k})(\sigma_{2} \cdot \mathbf{k})}{\mathbf{k}^{2} + m_{P}^{2}}$$

 $f_{B_1B'_1P}$... coupling constants m_P ... mass of the exchanged pseudoscalar meson

• SU(3) breaking due to the mass splitting of the ps mesons $(m_{\pi} = 138.0 \text{ MeV}, m_{K} = 495.7 \text{ MeV}, m_{\eta} = 547.3 \text{ MeV})$ is taken into account

Details:

(H. Polinder, J.H., U.-G. Meißner, NPA 779 (2006) 244) (H. Polinder, J.H., U.-G. Meißner, PLB 653 (2007) 29)

Coupled channels Lippmann-Schwinger Equation

$$\begin{split} T_{\rho'\rho}{}^{\nu'\nu,J}(\rho',\rho) &= V_{\rho'\rho}{}^{\nu'\nu,J}(\rho',\rho) \\ &+ \sum_{\rho'',\nu''} \int_{0}^{\infty} \frac{d\rho''\rho''^{2}}{(2\pi)^{3}} V_{\rho'\rho''}{}^{\nu'\nu'',J}(\rho',\rho'') \frac{2\mu_{\nu''}}{\rho^{2} - \rho''^{2} + i\eta} T_{\rho''\rho}{}^{\nu''\nu,J}(\rho'',\rho) \\ \rho', \rho &= \Lambda \Lambda, \Sigma N \\ &= \Lambda, \Sigma \Sigma, \Xi N, \Sigma \Lambda \\ &= \Xi \Xi \end{split}$$

LS equation is solved for particle channels (in momentum space) Coulomb interaction is included via the Vincent-Phatak method The potential in the LS equation is cut off with the regulator function:

$$V_{\rho'\rho}^{\ \nu'\nu,J}(\rho',\rho)
ightarrow f^{\Lambda}(\rho') V_{\rho'\rho}^{\ \nu'\nu,J}(\rho',\rho) f^{\Lambda}(\rho); \quad f^{\Lambda}(\rho) = e^{-(\rho/\Lambda)^4}$$

consider values $\Lambda = 550 - 700 \text{ MeV}$

(No SU(3) constraints from the NN sector are imposed!)

・ 同 ト ・ ヨ ト ・ ヨ ト …

N integrated cross sections

イロト 不同 トイヨト イヨト

Results for S = -3 and S = -4

Johann Haidenbauer

Baryon-baryon interactions

3

EE integrated cross sections

J.H., U.-G. Meißner, Phys. Lett. B 684 (2010) 275

イロト 不得 とくき とくきとう

	EFT LO				NSC97a	NSC97f	fss2
∧ [MeV]	550	600	650	700			
$a_s^{\equiv \wedge}$	-33.5	35.4	12.7	9.07	-0.80	-2.11	-1.08
$a_t^{\equiv \wedge}$	0.33	0.33	0.32	0.31	0.54	0.33	0.26
$a_s^{\Xi^0 \Sigma^+}$	4.28	3.45	2.97	2.74	4.13	2.32	-4.63
$a_t^{\Xi^0 \Sigma^+}$	-2.45	-3.11	-3.57	-3.89	3.21	1.71	-3.48
$a_s^{\equiv\equiv}$	3.92	3.16	2.71	2.47	17.81	2.38	-1.43
$a_t^{\equiv \equiv}$	0.63	0.59	0.55	0.52	0.40	0.48	3.20

(Nijmegen: Stoks & Rijken, PRC 59 (1999) 3009) (fss2: Fujiwara, Suzuki & Nakamoto, Prog. Part. Nucl. Phys. 58 (2007) 439)

イロン 不聞 とくほど 不良とう

Preliminary (incomplete) NLO results

- Additional (8) contact terms in S-waves are taken into account
- (10) Contact terms in P-waves are not yet included
- Two-pseudoscalar-meson exchange diagrams are missing
- no SU(3) constraints from the NN sector are imposed (SU(3) symmetry is used to relate ΛN and ΣN!)
- leading order SU(3) breaking in the one-boson exchange diagrams (coupling constants) is ignored

⇒ J.H., Nucl. Phys. A 835 (2010) 168

W integrated cross sections (preliminary)

Johann Haidenbauer

Baryon-baryon interactions

N scattering lengths [fm] (preliminary)

	EFT NLO				EFT LO	NSC97f	experiment
∧ [MeV]	550	600	650	700	550		
$a_s^{\wedge p}$	-2.61	-2.61	-2.59	-2.63	-1.90	-2.51	$-1.8^{+2.3}_{-4.2}$
$a_t^{\Lambda p}$	-1.64	1.63	-1.62	-1.63	-1.22	-1.75	$-1.6^{+1.1}_{-0.8}$
a _s ^{Σ+p}	-4.13	-4.11	-3.99	-3.97	-2.24	-4.35	
$a_t^{\Sigma^+ p}$	-0.01	0.01	0.01	0.01	0.70	-0.25	
χ ²	16.8	16.7	16.5	16.9	29.6	16.7	
(³ _A H) <i>E</i> _B	-2.34	-2.34	-2.39	-2.38	-2.35	-2.30	-2.354(50)

<ロト < 回 > < 回 > < 回 > 、

æ

 $YN, YY, \Xi Y, \Xi \Xi$ interactions based on EFT

- approach is based on the Weinberg power counting, analogous to the NN case
- LO potential (contact terms, one-pseudoscalar-meson exchange) is derived imposing SU(3)_f constraints
- Good description of the empirical YN data was achieved (with only 5 free parameters!)
- \Rightarrow Predictions for the S = -3 ($\Lambda \Xi$, $\Sigma \Xi$) and S = -4 ($\Xi \Xi$) sectors can be made
- Preliminary (incomplete) YN results in next-to-leading order (NLO) look very promising

Next tasks:

- A combined study of the *NN* and *YN* systems in chiral EFT, based on a complete NLO calculation
- A more thorough exploration of the interrelation between the elementary *YN* interaction and the properties of light hypernuclei
 - calculate the YNNN bound states
 - consider YNN three-body forces

イロト イポト イヨト イヨト